Abstract
We consider the following Cauchy problem:-iut=Δu-V(x)u+f(x,|u|2)u+(W(x)⋆|u|2)u,x∈ℝN,t>0,u(x,0)=u0(x),x∈ℝN,whereV(x)andW(x)are real-valued potentials andV(x)≥0andW(x)is even,f(x,|u|2)is measurable inxand continuous in|u|2, andu0(x)is a complex-valued function ofx. We obtain some sufficient conditions and establish two sharp thresholds for the blowup and global existence of the solution to the problem.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have