Abstract

We consider the Cauchy problem for a second order equation of hyperbolic type. This equation degenerates in two different ways. On one hand, the coefficients have a bad behavior with respect to time: there is a blow-up phenomenon in the first time derivative of the principal part’s coefficients, that is the derivative vanishes at the time t=0. On the other hand, the equation is weakly hyperbolic and the multiplicity of the roots is not constant, but zeroes are of finite order. Here we overcome the blow-up problem and, moreover, the finitely degeneration of the Cauchy problem allows us to give an appropriate Levi condition on the lower order terms in order to get C∞ well posedness of the Cauchy problem. Keywords: Cauchy problem, Hyperbolic equations, Levi conditions

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.