Abstract

Phenol hydrogenation is widely studied for selective production of the chemical intermediate cyclohexanone. A plethora of studies in the literature have reported catalysts aiming to achieve high selectivity compared to Pd/C. However, we demonstrate that selective and high-yielding reactions are inherent features of liquid-phase phenol hydrogenation using conventional Pd/C catalysts. We also show there is a very strong dependance of selectivity upon conversion, with high selectivity being maintained until near complete consumption of the phenol, after which subsequent reaction to the unwanted, fully hydrogenated cyclohexanol occurs rapidly. Furthermore, through competitive reactions with other aromatic molecules it is demonstrated that the phenol molecule effectively self-poisons the onwards reaction of weakly bound cyclohexanone, likely by virtue of its relative adsorption strength, and this is the source of the intrinsic selectivity. The implications of this to the reaction mechanism, and in turn to the rational design of catalysts, especially for obtaining chemicals from phenolic bio-oils, are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call