Abstract

Heteroatom-doped carbon materials have attracted immense attention for heterogeneous catalysis applications because of their excellent physicochemical properties. In this work, we prepared a cost-effective triazinyl-containing two-dimension COFs (2D-COFs), and then the 2D-COFs was self-templated carbonized to fabricate 2D nitrogen-doped carbon nanosheets (NCNs). NCNs were modified with highly dispersed small palladium nanoparticles (Pd NPs), affording the Pd/NCNs catalyst. The as-prepared NCNs and Pd/NCNs exhibited a smoke-like morphology, a large specific surface area, and mesoporous and macroporous structures, which can enhance reactants diffusion and mass transfer. The obtained Pd/NCNs catalyst exhibited excellent activity, stability, and recyclability in the aqueous-phase hydrodechlorination (HDC) of organic hazardous substances chlorophenols (CPs). Meanwhile, outstanding activity and high selectivity were observed for the subsequent hydrogenation of the HDC product phenol to cyclohexanone. The excellent activity of the Pd/NCNs catalyst was related to the synergistic effect of Pd NPs and the nitrogen atoms doped in the NCNs. Thus, this study offers a novel, facile route for fabrication heteroatom-doped carbon materials derived from cost-effective COFs materials to prepare highly dispersed small noble-metal-NP-modified catalysts for various catalytic applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.