Abstract
We use exact diagonalization and cluster perturbation theory to address the role of strong interactions and quantum fluctuations for spinless fermions on the honeycomb lattice. We find quantum fluctuations to be very pronounced both at weak and strong interactions. A weak second-neighbor Coulomb repulsion $V_2$ induces a tendency toward an interaction-generated quantum anomalous Hall phase, as borne out in mean-field theory. However, quantum fluctuations prevent the formation of a stable quantum Hall phase before the onset of the charge-modulated phase predicted at large $V_2$ by mean-field theory. Consequently, the system undergoes a direct transition from the semimetal to the charge-modulated phase. For the latter, charge fluctuations also play a key role. While the phase, which is related to pinball liquids, is stabilized by the repulsion $V_2$, the energy of its low-lying charge excitations scales with the electronic hopping $t$, as in a band insulator.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.