Abstract

Brain-computer interface (BCI) systems have emerged as an augmentative technology that can provide a promising solution for individuals with motor dysfunctions and for the elderly who are experiencing muscle weakness. Steady-state visually evoked potentials (SSVEPs) are widely adopted in BCI systems due to their high speed and accuracy when compared to other BCI paradigms. In this paper, we apply combined magnitude and phase features for class discrimination in a real-time SSVEP-based BCI platform. In the proposed real-time system users gain control of a motorised bed system with seven motion commands and an idle state. Experimental results amongst eight participants demonstrate that the proposed real-time BCI system can successfully discriminate between different SSVEP signals achieving high information transfer rates (ITR) of 82.73 bits/min. The attractive features of the proposed system include noninvasive recording, simple electrode configuration, excellent BCI response and minimal training requirements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.