Abstract

The extrapolation of small-cluster exact-diagonalisation calculations and the Monte-Carlo method is used to study the spin-one-half Falicov–Kimball model extended by the spin-dependent Coulomb interaction (J) between the localized f and itinerant d electrons as well as the on-site Coulomb interaction (U ff ) between the localized f electrons. It is shown that in the symmetric case the ground-state phase diagram of the model has an extremely simple structure that consists of only two phases, and namely, the charge-density-wave (CDW) phase and the spin-density-wave (SDW) phase. The nonzero temperature studies showed that these phases persist also at finite temperatures. The critical temperature T c for a transition from the low-temperature ordered phases to the high-temperature disordered phase is calculated numerically for various values of J and U ff .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.