Abstract

The collective motion of microswimmers in suspensions induce patterns of vortices on scales that are much larger than the characteristic size of a microswimmer, attaining a state called bacterial turbulence. Hydrodynamic turbulence acts on even larger scales and is dominated by inertial transport of energy. Using an established modification of the Navier-Stokes equation that accounts for the small-scale forcing of hydrodynamic flow by microswimmers, we study the properties of a dense suspension of microswimmers in two dimensions, where the conservation of enstrophy can drive an inverse cascade through which energy is accumulated on the largest scales. We find that the dynamical and statistical properties of the flow show a sharp transition to the formation of vortices at the largest length scale. The results show that 2D bacterial and hydrodynamic turbulence are separated by a subcritical phase transition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.