Abstract

Two new phases in the Ag-Cd-P-S system containing two second-order Jahn-Teller (SOJT) distorted d10 cations (Cd2+ and Ag+), namely, Ag2Cd(P2S6) (1) and AgCd3(PS4)S2 (2), are obtained via medium-temperature solid-state synthesis. Compound 1 exhibits a two-dimensional layered structure and undergoes a first-order structural phase transition at approximately 280 °C. This outcome can be ascribed to the significant mismatch in the expansion coefficients between Cd-S (Ag-S) and P-P (P-S) bonds evaluated through bond valence theory. The three-dimensional non-centrosymmetric (NCS) framework of 2 is constructed by two types of tetrahedral layers consisting of corner-shared CdS4, AgS4, and PS4 tetrahedra. Compound 2 exhibits second harmonic generation (SHG) intensity of 0.45 times that of commercial AgGaS2 (AGS) at a laser irradiation of 1.85 μm and an optical band gap of 2.56 eV, and no intrinsic vibrational absorption of chemical bonds is observed in the range of 2.5-18.2 μm. Both phase transition in 1 and SHG properties in 2 are closely related to the SOJT distorted d10 cations and diverse phosphorus-sulfur polyanions (PaSb)n-, which together can easily result in NCS distorted structures and interesting properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.