Abstract

Quaternary metal thiophosphates containing second-order Jahn-Teller distorted d10 Ag+ and lone-pair cations, Ag3Bi(PS4)2 (1), Ag7Sn(PS4)3 (2), and Ag7Pb(PS4)3 (3), were obtained by solid-state synthesis. The structural frameworks of 2 and 3 feature an infinite 1-D interchiral double helix ∞1(Ag3P2S11), which is rare in inorganic compounds. Compound 3 undergoes a significant first-order structural phase transition from monoclinic to hexagonal at ∼204 °C. This can be ascribed to the significant mismatch in the expansion coefficients between Pb-S (Ag-S) and P-S bonds evaluated by bond valence theory. The three compounds are Ag+ ionic conductors, and Ag+ ion migration pathways are proposed by calculating maps of low bond valence mismatch. Moreover, the optical properties of the three compounds were studied, and electronic structure calculations were performed. The combination of second-order Jahn-Teller distorted d10 cation and lone-pair cation provides a new strategy to explore new metal thiophosphates with interesting structures and promising properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.