Abstract

Scattering type scanning near-field optical microscopy (s-SNOM) allows sub diffraction limited spatial resolution. Interferometric homodyne detection in s-SNOM can amplify the signal and extract vibrational responses based on sample absorption. A stable reference phase is required for a high quality homodyne-detected near-field signal. This work presents the development of a phase stabilization mechanism for s-SNOM to provide stable homodyne conditions. The phase stability is found to be better than 0.05 rad for the mid infrared light source. Phase stabilization results in improved near field images and vibrational spectroscopies. Spatial inhomogeneities of the boron nitride nanotubes are measured and compared.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.