Abstract

A series of Nb-rich Zr/Nb and Ti/Nb multilayers were sputter deposited. Upon a reduction in thickness, a pseudomorphic bcc phase was stabilized in the Zr and Ti layers. X-ray and electron diffraction techniques were used to confirm these phase transformations. The change in phase stability was modeled by the competition between volumetric and interfacial components of the total free energy of a unit bilayer representing the multilayer. An outcome of this model is the ability to plot phase stability diagrams for multilayers, referred to as biphase diagrams, as a function of bilayer thickness and volume fraction. A comparison of the phase stability boundary between hcp/bcc and bcc/bcc for these two systems has shown that the bcc Ti’s pseudomorphic phase stabilization is maintained for a much larger layer thickness as compared to Zr. Atom probe compositional profiles of the Ti/Nb multilayers have indicated that the Nb layers interdiffused into the Ti layers thus helping to facilitate the bcc Ti phase stability in the Ti/Nb multilayers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call