Abstract

AbstactWith extensive first‐principles calculations, we investigate the phase stability, electronic structures, and superconductivity properties of the BaPb1−xBixO3 (BPBO) and Ba1−xKxBiO3 (BKBO) perovskites with the cubic (C), tetragonal (T), and orthorhombic (O) phases. Our calculations show that the tetragonal superconducting phases of both perovskites are metastable. However, the orthorhombic phase of the BPBO perovskite in the superconductivity region is only slightly more stable than the tetragonal phase. The small energy difference between the T and O phases and the discontinuous T‐to‐O phase transition account for the experimentally observed coexistence of the T and O phases. On the other hand, the BKBO perovskite involves a large energy difference between the T and O phases, which induces a low equilibrium temperature of the discontinuous T‐to‐O phase transition, in agreement with the experimental observation that the tetragonal BKBO is maintained down to low temperatures. Moreover, the electronic structures of both BPBO and BKBO superconductors show a flat band near the Fermi level, which is favorable for superconductivity. Furthermore, we find that the longer the total length of the flat band segment is, the higher the critical temperature of the BPBO or BKBO perovskite is. This key finding could be generalized straightforwardly to other unconventional superconductors and can be used to design and find optimal composition with maximum Tc for new unconventional superconductors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.