Abstract

In the field of radiation therapy, accurate and robust dose calculation is required. For this purpose, precise modeling of the irradiation system and reliable computational platforms are needed. At the Heidelberg Ion Therapy Center (HIT), the beamline has been already modeled in the FLUKA Monte Carlo (MC) code. However, this model was kept confidential for disclosure reasons and was not available for any external team. The main goal of this study was to create efficiently phase space (PS) files for proton and carbon ion beams, for all energies and foci available at HIT. PSs are representing the characteristics of each particle recorded (charge, mass, energy, coordinates, direction cosines, generation) at a certain position along the beam path. In order to achieve this goal, keeping a reasonable data size but maintaining the requested accuracy for the calculation, we developed a new approach of beam PS generation with the MC code FLUKA. The generated PSs were obtained using an infinitely narrow beam and recording the desired quantities after the last element of the beamline, with a discrimination of primaries or secondaries. In this way, a unique PS can be used for each energy to accommodate the different foci by combining the narrow-beam scenario with a random sampling of its theoretical Gaussian beam in vacuum. PS can also reproduce the different patterns from the delivery system, when properly combined with the beam scanning information. MC simulations using PS have been compared to simulations, including the full beamline geometry and have been found in very good agreement for several cases (depth dose distributions, lateral dose profiles), with relative dose differences below 0.5%. This approach has also been compared with measured data of ion beams with different energies and foci, resulting in a very satisfactory agreement. Hence, the proposed approach was able to fulfill the different requirements and has demonstrated its capability for application to clinical treatment fields. It also offers a powerful tool to perform investigations on the contribution of primary and secondary particles produced in the beamline. These PSs are already made available to external teams upon request, to support interpretation of their measurements.

Highlights

  • In the particle therapy field, Monte-Carlo (MC) codes provide a powerful tool to perform accurate calculations, with a precise description of the transport and interactions of the beam with the traversed materials, compared to the current treatment planning systems (TPS) as the one used at Heidelberg Ion Therapy Center (HIT; Syngo RT Planning TPS, Siemens AG Healthcare), which is based on analytical algorithms using fast pencil-beam dose calculation [1]

  • For protons the calculated full-width half maximum (FWHM) values are far different from the initial values of {2.5, 6, 8, and 10} mm assumed in a previous work, which was only using a simplified beamline modeling for guiding the LIBC generation [4]

  • For energies above 100 MeV/u, for focus 2 we obtained μ = 7.69 ± 0.37 mm, for focus 3 μ = 9.40 ± 0.30 mm, and for focus 4 μ = 11.16 ± 0.26 mm. These new values are used for the whole study in order to reach with the phase space (PS) simulation a good agreement to the LIBC foci values at isocenter, which are used by the TPS

Read more

Summary

Introduction

In the particle therapy field, Monte-Carlo (MC) codes provide a powerful tool to perform accurate calculations, with a precise description of the transport and interactions of the beam with the traversed materials, compared to the current treatment planning systems (TPS) as the one used at Heidelberg Ion Therapy Center (HIT; Syngo RT Planning TPS, Siemens AG Healthcare), which is based on analytical algorithms using fast pencil-beam dose calculation [1]. The beamline has been modeled in great details, the vacuum window and the Beam and Application Monitoring System (BAMS), composed of two multiwire proportional chambers and three ionization chambers that are monitoring the beam, providing accurate data for the parameterization of the lateral dose spread for additional input to the analytical clinical TPS [5]. Due to confidential issues with the beamline geometry, the model is not available for external users in need of precise simulation, neither for data analysis comparisons after irradiation at HIT nor for simulation-related researches

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call