Abstract

We report the phase space defined by the quantum Hall effect breakdown in polymer gated epitaxial graphene on SiC (SiC/G) as a function of temperature, current, carrier density, and magnetic fields up to 30 T. At 2 K, breakdown currents (I(c)) almost 2 orders of magnitude greater than in GaAs devices are observed. The phase boundary of the dissipationless state (ρ(xx)=0) shows a [1-(T/T(c))2] dependence and persists up to T(c)>45 K at 29 T. With magnetic field I(c) was found to increase ∝B(3/2) and T(c)∝B2. As the Fermi energy pproaches the Dirac point, the ν=2 quantized Hall plateau appears continuously from fields as low as 1 T up to at least 19 T due to a strong magnetic field dependence of the carrier density.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call