Abstract
Reconstructing a signal from squared linear (rank-one quadratic) measurements is a challenging problem with important applications in optics and imaging, where it is known as phase retrieval. This paper proposes two new phase retrieval algorithms based on non-convex quadratically constrained quadratic programming (QCQP) formulations, and a recently proposed approximation technique dubbed feasible point pursuit (FPP). The first is designed for uniformly distributed bounded measurement errors, such as those arising from high-rate quantization (B-FPP). The second is designed for Gaussian measurement errors, using a least squares criterion (LS-FPP). Their performance is measured against state-of-the-art algorithms and the Cram\'er-Rao bound (CRB), which is also derived here. Simulations show that LS-FPP outperforms the state-of-art and operates close to the CRB. Compact CRB expressions, properties, and insights are obtained by explicitly computing the CRB in various special cases -- including when the signal of interest admits a sparse parametrization, using harmonic retrieval as an example.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.