Abstract

Quadratically constrained quadratic programs (QCQPs) have a wide range of applications in signal processing and wireless communications. Non-convex QCQPs are NP-hard in general. Existing approaches relax the non-convexity using semi-definite relaxation (SDR) or linearize the non-convex part and solve the resulting convex problem. However, these techniques are seldom successful in even obtaining a feasible solution when the QCQP matrices are indefinite. In this paper, a new feasible point pursuit successive convex approximation (FPP-SCA) algorithm is proposed for non-convex QCQPs. FPP-SCA linearizes the non-convex parts of the problem as conventional SCA does, but adds slack variables to sustain feasibility, and a penalty to ensure slacks are sparingly used. When FPP-SCA is successful in identifying a feasible point of the non-convex QCQP, convergence to a Karush-Kuhn-Tucker (KKT) point is thereafter ensured. Simulations show the effectiveness of our proposed algorithm in obtaining feasible and near-optimal solutions, significantly outperforming existing approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.