Abstract

Phase retrieval has been mainly considered in the presence of Gaussian noise. However, the performance of the algorithms proposed under the Gaussian noise model severely degrades when grossly corrupted data, i.e., outliers, exist. This paper investigates techniques for phase retrieval in the presence of heavy-tailed noise -- which is considered a better model for situations where outliers exist. An $\ell_p$-norm ($0<p<2$) based estimator is proposed for fending against such noise, and two-block inexact alternating optimization is proposed as the algorithmic framework to tackle the resulting optimization problem. Two specific algorithms are devised by exploring different local approximations within this framework. Interestingly, the core conditional minimization steps can be interpreted as iteratively reweighted least squares and gradient descent. Convergence properties of the algorithms are discussed, and the Cram\'er-Rao bound (CRB) is derived. Simulations demonstrate that the proposed algorithms approach the CRB and outperform state-of-the-art algorithms in heavy-tailed noise.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.