Abstract
By using transfer matrix method, a systematic study on the properties of the reflection phase shifts and the reflection phase difference between TE and TM waves in a finite one-dimensional (1D) photonic crystal containing plasma and mu-negative materials is presented. It is found that the reflection phase difference between the two polarizations remains constant in a rather wide frequency range for a given incident angle. More specifically, the reflection phase difference increases gradually from 0 to π rad with the increase of the incident angle. That is to say, the finite 1D structure can serve as a broadband phase retarder. It is also evident that the working frequency range of the phase retarder can be adjusted by altering the plasma frequency and the thickness of the plasma layers without changing the structure of the photonic crystal.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have