Abstract

In this paper, a novel kind of one-dimensional (1D) photonic crystal (PC) doped with indium antimonide (InSb) is proposed, which is theoretically investigated by the transfer matrix method to create a giant lateral shift that is also called the Goos–Hänchen (GH) shift. The transmittance features of the proposed PCs are ascribed to the temperature. The influences of the incident angle on the transmittance of TE and TM waves have also been studied in the theory. For the TE wave, the transmittance is also affected by magnetic field strength, due to the characteristics of the permittivity of InSb layers. Therefore, for the TE wave, such PCs not only can generate huge positive and negative GH displacements but also can produce some regular changes under the effects of temperature and external magnetic field. The calculated results demonstrate that the normalized positive GH shift can reach around 55 times the wavelength, and the normalized negative one can get to around 182 times the wavelength. When the angle of incidence is large or small, the resulting GH shift will also produce interesting changes. These 1D PCs may provide a theoretical possibility for some devices that detect changes in temperature or magnetic field strength, or may be applied to angle sensors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call