Abstract

Solid-state high-harmonic generation is intrinsically sensitive to band structure, carrier population, and carrier scattering. As such, solid-state high-harmonic generation is increasingly used as a probe for femtosecond time-resolved pump-probe experiments. So far, most experimental pump-probe studies have reported photoexcitation-induced amplitude suppression of high-harmonic generation in solid-state media, yet the origins of this phenomenon remain elusive. Through simulations based on the semiconductor Bloch equations, we identify the dephasing of the coherent carrier population as the primary mechanism driving this suppression. Furthermore, we find band gap renormalization to be a source for phase shifts of high harmonics. We introduce an analytical model, based on a semi-classical action, that supports our numerical outcomes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.