Abstract

Artificial crystals synthesized by atomic-scale epitaxy provide the ability to control the dimensions of the quantum phases and associated phase transitions via precise thickness modulation. In particular, the reduction in dimensionality via quantized control of atomic layers is a powerful approach to revealing hidden electronic and magnetic phases. Here, we demonstrate a dimensionality-controlled and induced metal-insulator transition (MIT) in atomically designed superlattices by synthesizing a genuine two-dimensional (2D) SrRuO_{3} crystal with highly suppressed charge transfer. The tendency to ferromagnetically align the spins in an SrRuO_{3} layer diminishes in 2D as the interlayer exchange interaction vanishes, accompanying the 2D localization of electrons. Furthermore, electronic and magnetic instabilities in the two SrRuO_{3} unit cell layers induce a thermally driven MIT along with a metamagnetic transition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.