Abstract
The study of insulation degradation processes is crucial for the reliable operation of power equipment and electronic devices. The phase field method has been widely used in recent years to simulate the degradation process of insulation materials. However, the effect of space charge was ignored. In this paper, a novel phase field method based on the bipolar carrier transfer model is suggested. This model can simulate degradation under different temperatures and DC or combined AC/DC voltage. The cases under AC and combined AC/DC voltage at different temperatures are simulated by COMSOL. Methods to ensure model convergence are proposed. The results show that the field strength distribution under a combined AC/DC field is more uniform, especially for negative polarity. For the same voltage form, temperature and breakdown time show an exponential relationship. The results are consistent with those of previous experimental studies, proving the usability of the model. In addition, the processes of initiation, growth, and breakdown stage of the dielectric degradation process, as well as the stagnation period, are explored theoretically. The stagnation time at low temperatures under combined AC/negative DC voltage is long. The research in this paper is useful for insulation optimization design, condition assessment, and longevity prediction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.