Abstract

Precipitate coarsening is a major mechanism responsible for the degradation in mechanical properties of many precipitation-hardened alloys at high temperatures. With recent developments in processing of nanocomposite materials, a substantial volume fraction of inert second phase ceramic nanoparticles can be introduced into the grain interiors of polycrystalline materials. These intragranular nanoparticles can have synergistic effects of impeding dislocation motion and interacting with coarsening precipitates to modify the coarsening rate. In this work, the precipitate coarsening behavior of an alloy in the presence of intragranular inert nanoparticles was studied using the phase field method. Two key measurements of coarsening kinetics, precipitate size distribution and coarsening rate, were found to be affected by the volume fraction and the size of nanoparticles. Two novel mechanisms related to geometric constraints imposed by inter-nanoparticle distance and the blockage of solute diffusion path by nanoparticle–matrix interfaces were proposed to explain the observed changes in precipitate coarsening kinetics. The simulation results in general suggest that the use of small nanoparticles with large number density is effective in slowing down the coarsening kinetics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.