Abstract
Multiple structural phases of tellurium (Te) have opened up various opportunities for the development of two-dimensional (2D) electronics and optoelectronics. However, the phase-engineered synthesis of 2D Te at the atomic level remains a substantial challenge. Herein, we design an atomic cluster density and interface-guided multiple control strategy for phase- and thickness-controlled synthesis of α-Te nanosheets and β-Te nanoribbons (from monolayer to tens of μm) on WS2 substrates. As the thickness decreases, the α-Te nanosheets exhibit a transition from metallic to n-type semiconducting properties. On the other hand, the β-Te nanoribbons remain p-type semiconductors with an ON-state current density (ION) up to ~ 1527 μA μm−1 and a mobility as high as ~ 690.7 cm2 V−1 s−1 at room temperature. Both Te phases exhibit good air stability after several months. Furthermore, short-channel (down to 46 nm) β-Te nanoribbon transistors exhibit remarkable electrical properties (ION = ~ 1270 μA μm−1 and ON-state resistance down to 0.63 kΩ μm) at Vds = 1 V.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.