Abstract
A fully digital frequency synthesizer for RF wireless applications has recently been proposed. At its foundation lies a digitally controlled oscillator that deliberately avoids any analog tuning controls. When implemented in a digital deep-submicrometer CMOS process, the proposed architecture appears more advantageous over conventional charge-pump-based phase-locked loops (PLLs), since it exploits signal processing capabilities of digital circuits and avoids relying on the fine voltage resolution of analog circuits. An actual implementation of an all-digital PLL (ADPLL)-based local oscillator and transmitter used in a commercial 0.13-/spl mu/m CMOS single-chip Bluetooth radio has recently been disclosed. The conventional phase/frequency detector, charge pump and RC loop filter are replaced by a time-to-digital converter and a simple digital loop filter. Due to the lack of the correlational phase detection mechanism, the loop does not contribute to the reference spurs. The measured close-in phase noise of -86 dBc/Hz is adequate even for Global System for Mobile communications (GSM) applications. In this paper, we present the mathematical description and operational details of the phase-domain ADPLL.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Circuits and Systems II: Express Briefs
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.