Abstract

A fully digital frequency synthesizer for RF wireless applications has recently been proposed. At its foundation lies a digitally controlled oscillator with sufficiently fine frequency resolution to avoid analog tuning. The conventional phase/frequency detector, charge pump and RC loop filter are replaced by a time-to-digital converter and a simple digital loop filter. When implemented in highly scaled digital CMOS processes, the proposed architecture is more advantageous over conventional charge-pump-based phase-locked loops (PLLs) since it exploits signal processing capabilities of digital circuits and avoids relying on the fine voltage resolution of analog circuits. In this brief, we present novel techniques used in the all-digital PLL to achieve an ultra-fast frequency acquisition of <50 mus while maintaining excellent phase noise and spurious performance during transmission and reception. This approach has been validated and incorporated in commercial single-chip Bluetooth and Global System for Mobile Communications radios realized in deep-submicrometer CMOS

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call