Abstract

We determine the ground-state phase diagram of the one-dimensional half-filled Hubbard model with on-site (nearest-neighbor) repulsive interaction U (V) and nearest-neighbor hopping t using the density-matrix renormalization group technique. Based on the results of the excitation gaps, Luttinger-liquid exponents, and bond-order-wave (BOW) order parameter, we confirm that the BOW phase appears in a substantial region between the charge-density-wave (CDW) and spin-density-wave phases. Each phase boundary is determined by multiple means and it allows us to make a cross-check on the validity of our estimations. We also find that the BOW-CDW transition changes from continuous to first order at the tricritical point (U(t),V(t)) approximately (5.89 t,3.10 t) and the BOW phase shrinks to zero at the critical end point (U(c),V(c)) approximately (9.25 t,4.76 t).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.