Abstract

We study enhanced ionization (EI) in asymmetric molecules by solving the 3D time-dependent Schrödinger equation for HeH2+ driven by a few-cycle laser pulse linearly polarized along the molecular axis. We find that EI is much stronger when the laser's carrier-envelope phase is such that the electric field at the peak of the pulse is antiparallel to the permanent dipole of the molecule (PDM). This phase dependence is explained by studying the molecule in the presence of a static electric field. When this field is antiparallel to the PDM, the energy of the dressed ground state moves up (with increasing internuclear distance R) to cross with excited states, leading to a stronger ionization via intermediate state resonances and via tunneling. We predict analytically the laser and molecular parameters at which these crossings are expected to occur in any asymmetric molecule.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.