Abstract

Effective thermal control and management in three-dimensional electronic packaging are desirable to ensure the heat generated in integrated circuits can be dissipated. Conventional base materials in electronics from substrate to protective layers, due to low coefficient of thermal conductivity, cannot help to cool down the circuits, while such elevated temperature could highly impact the performance of the chips. In this study, phase change material (PCM) is selected for potential applications in thermal management of electronic packaging due to its isothermal nature and high thermal storage capability. PCM based composite is developed through the impregnation technology using highly porous expanded graphite. Heat transfer test results reveal that the PCM based composite displays superior heat storage capacity, while maintaining the favorable feature of thermal and chemical stabilization for electronic applications. Toward the end, the concept of implementation of PCM based composite is proposed in thermal control of 3D integrated circuits. It is expected the proposed composite will improve heat dissipation, and ultimately enhance the performance of the chips.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call