Abstract

The transmission amplitude and phase characteristics of InP:Fe modified interdigitated gap photoconductive microwave switches are reported. Measurements in the 0.1-1 GHz frequency range show that the phase is shifted approximately 90 degrees and that the corresponding change in amplitude ranges from 43 dB at 0.1 GHz to 23 dB at 1 GHz when the illumination-induced conductance is switched from a low OFF-state value ( approximately 4*10/sup -8/ S) to a high ON-state value (5 mS). The observed characteristics can be described by a phase-shifting region and an amplitude modulation region. In the phase-shifting region the phase strongly depends on the conductance, and the amplitude is almost constant. In the amplitude modulation region both the amplitude and the phase depend on the conductance but the effect on the amplitude is much more pronounced. A lumped-element model describing the device performance is presented. It is concluded that these optoelectronic microwave switching devices are suitable for high-speed amplitude modulation but are not promising as high-speed phase shifter.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call