Abstract

Nowadays, coordination polymers (CPs) are promising candidates as sensory materials for their high sensitivity, improved selectivity, fast responsive nature, as well as good recyclability. However, poor chemical stability often makes their practical usage limited. Herein, employing a mixed ligand approach, we constructed a chemically robust CP, {[Zn2L2(DPA)2]·3H2O}n (IITKGP-70, IITKGP stands for the Indian Institute of Technology Kharagpur), which exhibited excellent framework robustness not only in water but also over a broad range of pH solutions (pH = 3-11). The developed framework displayed high selectivity and sensitivity for the detection of trivalent Al3+ ions and toxic hexavalent Cr(VI)-oxo anions in an aqueous medium. The developed framework exhibited an aqueous medium Al3+ turn-on phenomenon with a limit of detection (LOD) value of 1.29 μM, whereas a turn-off effect was observed for toxic oxo-anions (Cr2O72- and CrO42-) having LOD values of 0.27 and 0.71 μM, respectively. Both turn-on and turn-off mechanisms are speculated via spectroscopic methods coupled with several ex situ studies. Such a multiresponsive nature (both turn-on and turn-off) for aqueous medium detection of targeted cations and anions simultaneously in a single platform coupled with high robustness, ease of scalability, recyclability, and fast-responsive nature makes IITKGP-70 highly fascinating as a sensory material for real-world applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call