Abstract

Crystal structure engineering in nanoparticles has been regarded as a vital method in catalyst development and design. Herein, PtFe nanocubes, manufactured with ordered PtFe intermetallic structure and a desired facet of {202}, have been successfully prepared via the combination of selective deposition strategy and spatial barrier effect. In-situ X-ray photoelectron spectroscopy found that the growth of the high-index facet and formation of the nanocube for o-PtFe-202 materials arise from the surface Fe2+ modification stabilized effect and the selective deposition of Cl-, respectively. Moreover, density functional theory calculations and X-ray adsorption spectroscopies further proved that the improved oxygen reduction reaction activity and stability of o-PtFe-202 mainly originate from the synergistic effect of the desired high-index facet, ordered crystal structure, and resulting optimal d-band center of Pt. As expected, the o-PtFe-202 exhibits excellent mass activity (2.48 mA·ugPt-1) and specific activity (7.78 mA·cm-2), with only a 7.3% decrease in mass activity after 30 000 cycles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.