Abstract

Managed aquifer recharge (MAR) is a sustainable way of harvesting groundwater in water-stressed urbanized areas, where reclaimed wastewater or stormwater is applied on a large basin to infiltrate water into the groundwater aquifer naturally. This process could rapidly fluctuate the water table and move the capillary fringe boundary, and the change in flow dynamic and associated geochemical changes could trigger the release of sequestered pollutants, including per- and polyfluoroalkyl substances (PFAS), also known as ‘forever chemicals’, from the subsurface and capillary fringe. Yet, the potential of PFAS release from the subsurface and capillary zone during recharge events when the water table rapidly fluctuates has not been evaluated. This study uses laboratory column experiments to simulate PFAS release from pre-contaminated subsurface and capillary fringe during groundwater table fluctuation. The results reveal that the groundwater level fluctuations during MAR increased the release of perfluorobutanesulfonic acid (PFBS) and perfluorooctanesulfonic acid (PFOS) from the capillary fringe, but the fraction released depended on PFAS type and their association with soil colloids. A higher proportion of PFOS in column effluent was found to be associated with particles, while a greater portion of released PFBS was in a free or dissolved state. The direction of water table fluctuation did not affect the release of PFAS in this study. A lack of change in the concentration of bromide, a conservative tracer, during flow interruption, indicates that diffusion of PFAS through reconnected pores during water table rise had an insignificant effect on PFAS release. Overall, this study provides insights into how PFAS can be released from the subsurface and capillary fringe during managed aquifer recharge when the groundwater level is expected to fluctuate quickly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call