Abstract
The origin of adakite magmas remains controversial because initially the term adakite had petrogenetic significance implying an origin by direct melting of the eclogitized subducting oceanic crust. Many models have been produced for their origin, and until now there has not been a straightforward method to discriminate between these models in a given adakite suite. Here, we use detailed chronological and geochemical studies of selected adakitic edifices that allows for the determination of the magmatic output rate parameter (Qe), which has been correlated with the rates of magma generation deep within subduction zones. By providing temporal and eruption rate estimates, we provide constraints on the possible petrogenetic processes involved in the generation of adakite-like signatures. Adakite magmas derived from the melting of the subducting slab should be volumetrically insignificant when compared to the adakite-like magmas produced by typical arc magma generation processes. In this study, we use this observation and the extraordinary stratigraphic exposure from Miocene to present in an adakitic volcano in Panama and to study the temporal and chemical variation in erupted magmas to estimate rates of magma generation. Detailed chemical and geochronological analyses of Baru volcano indicate that the volcanic edifice was constructed in its entirety during the Quaternary and magmas display adakite-like features such as steep rare earth elements patterns, pronounced depletions in the heavy rare earth elements, low Y, high Sr, and high Sr/Y. The magmatic output rates (Qe) that we have calculated show that compared to other typical adakitic volcanoes, most of the volcanic edifice of Baru volcano was constructed extremely rapidly (<~213 k.a.) and in time frames that are similar to typical arc volcanoes. The observed chemical and mineralogical variation, coupled with the high magma production rates, indicate that Baru volcano is more representative of a typical arc volcano than a small-volume melt of the subducting oceanic crust. The technique we outline may have broader application in determining the petrogenetic conditions of other adakite suites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.