Abstract

Abstract China has been the world’s leading rare earth element (REE) and yttrium producer for more than 20 years and hosts a variety of deposit types. Carbonatite-related REE deposits are the most significant REE deposit type, with REY (REE and yttrium)-bearing clay deposits, or ion adsorption-type deposits, being the primary source of the world’s heavy REEs. Other REY resources in China include those hosted in placers, alkaline granites, pegmatites, and hydrothermal veins, as well as in additional deposit types in which REEs may be recovered as by-product commodities. Carbonatite-related REE deposits in China provide nearly all the light REE production in the world. Two giant deposits are currently being mined in China: Bayan Obo and Maoniuping. The carbonatite-related REE deposits in China occur along the margins of Archean-Paleoproterozoic blocks, including the northern, southern, and eastern margins of the North China craton, and the western margin of the Yangtze craton. The carbonatites were emplaced in continental rifts (e.g., Bayan Obo) or translithospheric strike-slip faults (e.g., Maoniuping) along reactivated craton margins. The craton margins provide the first-order control for carbonatite-related REE resources. Four REE metallogenic belts, including the Proterozoic Langshan-Bayan Obo, late Paleozoic-early Mesozoic eastern Qinling-Dabie, late Mesozoic Chishan-Laiwu-Zibo, and Cenozoic Mianning-Dechang belts, occur along cratonic margins. Geologic and geochemical data demonstrate that the carbonatites in these belts originated from mantle sources that had been previously enriched, most likely by recycled marine sediments through subduction zones during the assembly of continental blocks. Although the generation of carbonatite magma is debated, a plausible mechanism is by liquid immiscibility between silicate and carbonate melts. This process would further enrich REEs in the carbonatite end member during the evolution of mantle-derived magma. The emplacement of carbonatite magma in the upper crust, channeled by translithospheric faults in extensional environments, leads to a rapid decompression of the magma and consequently exsolution of a hydrothermal fluid phase. The fluid is characterized by high temperature (600°–850°C), high pressure (up to 350 MPa), and enrichment in sulfate, CO2, K, Na, Ca, Sr, Ba, and REEs. Immiscibility of sulfate melts from the aqueous fluid, and phase separation between CO2 and water may take place upon fluid cooling. Although both sulfate and chloride have been called upon as important ligands in hydrothermal REE transport, results of our studies suggest that sulfate is more important. The exsolution of a sulfate melt from the primary carbonatite fluid would lead to a significant decrease of the sulfate activity in the fluid and trigger REE precipitation. The subsequent unmixing between CO2 and water may also play an important role in REE precipitation. Because of the substantial ability of the primary carbonatite fluid to contain REEs, a large-volume magma chamber or huge fluid flux are not necessary for the formation of a giant REE deposit. A dense carbonatite fluid and rapid evolution hinder long distance fluid transportation and distal mineralization. Thus, carbonatite-related alteration and mineralization occur in or proximal to carbonatite dikes and sills, and this is observed in all carbonatite-related REE deposits in China. Ion adsorption-type REE deposits are primarily located in the South China block and are genetically linked to the weathering of granite and, less commonly, volcanic rocks and lamprophyres. Indosinian (early Mesozoic) and Yanshanian (late Mesozoic) granites are the most important parent rocks for these REE deposits. Hydrothermal alteration by fluids exsolved from late Mesozoic granites or related alkaline rocks (e.g., syenite) may have enriched the parent rocks in REEs, particularly the heavy REEs. Furthermore, this alteration process led to the transformation of some primary REE minerals to secondary REE minerals that are more readily broken down during subsequent weathering. During the weathering process, the REEs are released from parent rocks and adsorbed onto kaolinite and halloysite in the weathering profile, and further enriched by the loss of other material to form the ion adsorption-type REE deposits. A warm and humid climate and a low-relief landscape are important characteristics for development of ion adsorption REE deposits.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call