Abstract

The steady-state prompt fluorescence, phosphorescence and delayed fluorescence spectra and triplet lifetimes of free proflavin and proflavin bound to native DNA and alternating poly d(A-IU) were obtained as a function of temperature in a buffer-glycerol solvent. The intensity of the proflavin E-type delayed fluorescence (DF) relative to both the phosphorescence (Ph) and the prompt fluorescence (F) was observed to increase with temperature, and plots of both ln (DF/Ph) and ln (DF/(F.tau T] as a function of 1/T were linear over a wide range of temperatures. Although the activation energies for the thermal repopulation of the proflavin excited singlet state from the triplet obtained from the slopes of these plots were essentially unchanged on binding, perturbations to the S1----T1 intersystem crossing rate constants extracted from the intercepts at infinite temperature were observed. The marked enhancement of the intersystem crossing that occurs with binding to the iodinated polynucleotide reflects an external heavy atom perturbation upon the intercalated dye which also induces a shortening in the triplet lifetime. With proflavin bound to DNA an enhancement to the S1----T1 intersystem crossing, though lesser in magnitude than for poly d(A-IU), is observed but with no change to the triplet lifetime. The well-studied fluorescence quenching of DNA-bound proflavin is a result of this increase in the intersystem crossing. It is proposed that these non-heavy atom enhancements in the intersystem crossing are due to distortions of the molecular plane of the bound proflavin molecule. In total these analyses provide a complete description of the excited state processes of the proflavin molecule and their variations with temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call