Abstract

For augmented reality surgical navigation based on C-arm imaging, accuracy of the overlaid augmented reality onto the X-ray image is imperative. However, overlay displacement is generated when a conventional pinhole model describing a geometric relationship of a normal camera is adopted for C-arm calibration. Thus, a modified model for C-arm calibration is proposed to reduce this displacement, which is essential for accurate surgical navigation. Based on the analysis of displacement pattern generated for three-dimensional objects, we assumed that displacement originated by moving the X-ray source position according to the depth. In the proposed method, X-ray source movement was modeled as variable intrinsic parameters and represented in the pinhole model by replacing the point source with a planar source. The improvement which represents a reduced displacement was verified by comparing overlay accuracy for augmented reality surgical navigation between the conventional and proposed methods. The proposed method achieved more accurate overlay on the X-ray image in spatial position as well as depth of the object volume. We validated that intrinsic parameters that describe the source position were dependent on depth for a three-dimensional object and showed that displacement can be reduced and become independent of depth by using the proposed planar source model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call