Abstract

Cardiac perfusion MRI is vital for disease diagnosis, treatment planning, and risk stratification, with anomalies serving as markers of underlying ischemic pathologies. AI-assisted methods and tools enable accurate and efficient left ventricular (LV) myocardium segmentation on all DCE-MRI timeframes, offering a solution to the challenges posed by the multidimensional nature of the data. This study aims to develop and assess an automated method for LV myocardial segmentation on DCE-MRI data of a local hospital. The study consists of retrospective DCE-MRI data from 55 subjects acquired at the local hospital using a 1.5T MRI scanner. The dataset included subjects with and without cardiac abnormalities. The timepoint for the reference frame (post-contrast LV myocardium) was identified using standard deviation across the temporal sequences. Iterative image registration of other temporal images with respect to this reference image was performed using Maxwell's demons algorithm. The registered stack was fed to the model built using the U-Net framework for predicting the LV myocardium at all timeframes of DCE-MRI. The mean and standard deviation of the dice similarity coefficient (DSC) for myocardial segmentation using pre-trained network Net_cine is 0.78 ± 0.04, and for the fine-tuned network Net_dyn which predicts mask on all timeframes individually, it is 0.78 ± 0.03. The DSC for Net_dyn ranged from 0.71 to 0.93. The average DSC achieved for the reference frame is 0.82 ± 0.06. The study proposed a fast and fully automated AI-assisted method to segment LV myocardium on all timeframes of DCE-MRI data. The method is robust, and its performance is independent of the intra-temporal sequence registration and can easily accommodate timeframes with potential registration errors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.