Abstract

Micronucleus formation initiated by benzo[a]pyrene (B[a]P) and related xenobiotics is widely believed to reflect potential carcinogenic initiation, yet neither a dependence upon bioactivation nor the critical enzymes have been demonstrated. Using rat skin fibroblasts, protein oxidation (carbonyl formation) and content of prostaglandin H synthase (PHS) and cytochrome P4501A1 (CYP1A1) protein were determined by Western blot/immunodetection with enhanced chemiluminescence. DNA oxidation as 8-hydroxy-2′-deoxyguanosine formation was quantified using high-performance liquid chromatography with electrochemical detection. Fibroblast CYP1A1 activity assessed as ethoxyresorufin-O-deethylase was not detectable, and even CYP1A1 protein was measurable only after induction with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). However, TCDD additionally induced prostaglandin H synthase (PHS), which also was detectable constitutively. B[a]P 10 μM initiated the oxidation of DNA and protein, and the formation of micronuclei, all of which were enhanced over 2-fold by the dual CYP1A1/PHS inducer TCDD 10 nM, as well as by other PHS inducers, 12-O-tetradecanoylphorbol-13-acetate 1 μM and interleukin-1α 0.625 or 1.25 ng/ ml, that do not induce CYP1A1 (p < .05). Conversely, B[a]P target oxidation and micronucleus formation were abolished by 1-aminobenzotriazole 1mM (p < .05), which was a potent inhibitor of both peroxidases and P450. These results provide the first direct evidence that B[a]P-initiated micronucleus formation, like carcinogenic initiation, requires enzymatic bioactivation, and that peroxidase-dependent, reactive oxygen species-mediated oxidation of DNA, and possibly protein, constitutes a molecular mechanism of initiation in uninduced cells. Induction of either CYP1A1 or peroxidases such as PHS substantially enhances this genotoxic initiation, which may reflect cancer risk.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.