Abstract
In the light of particle swarm optimization (PSO) which utilizes both local and global experiences during search process, a permutation-based scheme for the resource-constrained project scheduling problem (RCPSP) is presented. In order to handle the permutation-feasibility and precedence-constraint problems when updating the particle-represented sequence or solution for the RCPSP, a hybrid particle-updating mechanism incorporated with a partially mapped crossover of a genetic algorithm and a definition of an activity-move-range is developed. The particle-represented sequence should be transformed to a schedule (including start times and resource assignments for all activities) through a serial method and accordingly evaluated against the objective of minimizing project duration. Experimental analyses are presented to investigate the performances of the permutation-based PSO. The study aims at providing an alternative for solving the RCPSP in the construction field by utilizing the advantages of PSO.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have