Abstract
Perinatal exposure to alcohol (PEA) induces general developmental and specific neuropsychiatric disturbances. Ethanol affects amino acid neurotransmission and synaptic plasticity. We were interested in the transcriptional effects of ethanol on the expression of complexins I and II, two synaptic vesicle proteins (SVP) with relevance for cognition and memory. We exposed pregnant Wistar inbred rats ( N = 4) and their pups until postnatal day 8 (P8) in vapor chambers and performed in situ-hybridizations regarding complexins I and II at P8 as well as neurobehavioral testing in adult animals of the same litters. At P8, serum ethanol levels of 281 ± 58 mg/dl were achieved. PEA animals presented a pronounced retardation of postnatal growth. Significantly lower expression levels of complexin I was observed in CA1, together with trends of reductions in other hippocampal and cortical regions. Complexin II was found reduced in anterior cingulate, prefrontal and fronto-parietal cortex. Adult rats of exposed litters showed worse performance in hippocampus-dependent learning (Morris water maze). The observed suppression of complexins I and II reveals disturbed synaptic plasticity and corresponds with long lasting, ethanol-induced deficits of learning and memory. Further investigations should focus on other synaptic vesicle protein genes in order to unravel the molecular basis of ethanol-induced neurocognitive disabilities.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have