Abstract

The increasing usage of general anesthetics on young children and infants has drawn extensive attention to the effects of these drugs on cognitive function later in life. Recent animal studies have revealed improvement in hippocampus-dependent performance after lower concentrations of sevoflurane exposure. However, the long-term effects of low-dose sevoflurane on the developing brain remain elusive. On postnatal day (P) 7, rats were treated with 1.2% sevoflurane (1.2% sevo group), 2.4% sevoflurane (2.4% sevo group), and air control (C group) for 6h. On P35-40, rats' hippocampus-dependent learning and memory was tested using the Morris water maze. Cognition-related and synapse-related proteins in the hippocampus were measured using Western blotting on P35. On the same day, neurogenesis and synapse ultrastructure were evaluated using immunofluorescence and transmission electron microscopy (TEM). On P35, the rats neonatally exposed to 1.2% sevoflurane showed better behavioral results than control rats, but not in the 2.4% sevo group. Exposure to 1.2% sevoflurane increased the number of 5'-bromo-2-deoxyuridine (BrdU)-positive cells in the dentate gyrus and improved both synaptic number and ultrastructure in the hippocampus. The expression levels of BDNF, TrkB, postsynaptic density (PSD)-95, and synaptophysin in the hippocampus were also increased in the 1.2% sevo group. In contrast, no significant changes in neurogenesis or synaptic plasticity were observed between the C group and the 2.4% sevo group on P35. These results showed that exposure of the developing brain to a low concentration of sevoflurane for 6h could promote spatial learning and memory function, along with increased hippocampal neurogenesis and synaptic plasticity, in later life.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.