Abstract

Peridynamics (PD) is a non-local continuum theory that enables failure prediction. It enables both crack initiation and propagation as well as crack branching. Also, it has been utilized to model simplified structures such as beams, plates and shells. In this study, a new peridynamic shell membrane formulation is presented. The equations of motion are obtained by using Euler-Lagrange equations. The bond constant is determined by comparing peridynamic and classical equations of motion for shell membranes for a special condition of peridynamic internal length parameter, horizon, approaching zero. Comparison of peridynamic results with analytical results for a benchmark problem confirms the validity of the present shell membrane formulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.