Abstract
In the present article, we investigate the Periastron precession for a spinning test particle moving in nearly circular orbits around naked singularities. We consider two well-known solutions that can produce a spacetime with naked singularity---(a) first, the Reissner-Nordstr\om metric, which is a static charged solution with spherical symmetry, and (b) second, the stationary, axisymmetric Kerr metric. For simplicity, we only consider the motion confined on the equatorial plane in both these cases and solve exactly the Mathisson-Papapetrou equations. In addition, we analytically compute the Periastron precession within the framework of linear spin approximation. The inclusion of the spin parameter modifies the results with nonspinning particles and also reflects some interesting properties of the naked geometries. Furthermore, we carried out a numerical approach without any assumptions to probe the large order spin values. The implication of the spin-curvature coupling in connection with the naked geometries is also discussed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have