Abstract

We investigate the frame-dragging effect of the hairy Kerr spacetimes on the spin of a test gyro and accretion disk. First, we analyze Lense-Thirring (LT) precession frequency, geodetic precession frequency, and the general spin precession frequency of a test gyro attached to a stationary observer in the spacetime. We find that the black hole hair suppresses those precession frequencies in comparison with that which occurs in Kerr spacetime in general relativity. Moreover, using those frequencies as a probe, we differentiate the hairy Kerr black hole (BH) from naked singularity (NS). Specifically, as the observer approaches the central source along any direction, the frequencies grow sharply for the hairy Kerr BH, while for the hairy NS they are finite except at the ring singularity. Then, we investigate the quasiperiodic oscillations (QPOs) phenomena as the accretion disk approaches the hairy Kerr BH or NS. To this end, we analyze the bound circular orbits and their perturbations. We find that as the orbits approach the corresponding innermost stable circular orbit (ISCO), both LT precession frequency and periastron precession frequency behave differently in the hairy Kerr BH and NS. Additionally, the hairy parameters have significant effects on the two frequencies. We expect that our theoretical studies could shed light on astrophysical observations in distinguishing hairy theories from Einstein's gravity, and also in distinguishing BH from NS in spacetime with hair.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call