Abstract

The fundamental performance of a linear Faraday type magnetohydrodynamic (MHD) accelerator under chemical and thermal equilibrium conditions is studied in this paper. Quasi-one dimensional numerical simulation is performed to characterize acceleration along the specified channel. In order to solve the set of differential equations of magnetohydrodynamics, the MacCormack scheme is employed. In this present calculation, a working gas of air-plasma, consisting of diatomic molecules of nitrogen, oxygen and hydrogen, is considered in order to actualize application of the MHD accelerator propulsion system. Numerical results show the characteristics of flow velocity, gas temperature and electrical conductivity of the MHD accelerator with the working gas of air-plasma. The computations are compared with numerical simulation results using the inert gas of argon evaluated in past studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.