Abstract

Abstract Investigation of application of magnetohydrodynamic (MHD) acceleration process for advanced propulsion system has significantly increased. The diagonal MHD accelerator is possible for this acceleration technique because of its minimum weight, size and complexity. In this paper, the fundamental performance of a diagonal type MHD accelerator under chemical and thermal equilibrium conditions is described. A one dimensional numerical simulation is performed to characterize the acceleration along the specified channel designed and developed at the NASA Marshall Space Flight Center. In order to solve the set of differential equations with MHD approximations, the MacCormack scheme is employed. In the present calculation, a working gas of air-plasma composed of diatomic molecules of nitrogen and oxygen seeded with potassium is considered in order to actualize application of the MHD accelerator propulsion system. Numerical results show the gasdynamic characteristics (flow velocity, gas pressure and gas temperature), electrical properties (electrical conductivity, Hall parameter and Faraday current density) and electrical efficiency of the MHD accelerator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.