Abstract

A new packaging system was developed for parenteral pharmaceuticals that combines the best attributes of plastic and glass without their respective drawbacks. This technological advancement is based on the synergy between high-precision injection-molded plastics and plasma coating technology. The result is a shatter-resistant, optically clear, low-particulate, and chemically durable packaging system. The demand for this product is driven by the expanding market, regulatory constraints, and product recalls for injectable drugs and biologics packaged in traditional glass materials. It is shown that this new packaging system meets or exceeds the important performance characteristics of glass, especially in eliminating the glass delamination and breakage that has been observed in many products. The new packaging system is an engineered, multilayer, glass-coated plastic composite that provides a chemically stable contact surface and oxygen barrier performance that exceeds a 2 year shelf life requirement. Evaluation of the coating system characteristics and performance stability to chemical, temperature, and mechanical extremes are reported herein.LAY ABSTRACT: A new packaging system for parenteral pharmaceuticals was developed that combines the best attributes of plastic and glass without their respective drawbacks. This technological advancement is based on the synergy between high-precision injection-molded plastics and plasma coating technology. The result is a shatter-resistant, optically clear, low-particulate, and chemically durable packaging system. It is shown that this new packaging system meets or exceeds the important performance characteristics of glass, especially in eliminating the glass delamination and breakage that has been observed in many products. The new packaging system is an engineered, multilayer, glass-coated plastic composite that provides a chemically stable contact surface and oxygen barrier performance that exceeds a 2 year shelf life requirement. Evaluation of the coating system characteristics and performance stability to chemical, temperature, and mechanical extremes are reported herein.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.