Abstract
This research was conducted to forecast the uniaxial compressive strength (UCS) of rocks via the random forest, artificial neural network, Gaussian process regression, support vector machine, K-nearest neighbor, adaptive neuro-fuzzy inference system, simple regression, and multiple linear regression approaches. For this purpose, geo-mechanical and petrographic characteristics of sedimentary rocks in southern Iran were measured. The effect of petrography on geo-mechanical characteristics was assessed. The carbonate and sandstone samples were classified as mudstone to grainstone and calc-litharenite, respectively. Due to the shallow depth of the studied mines and the low amount of quartz minerals in the samples, the rock bursting phenomenon does not occur in these mines. To develop UCS predictor models, porosity, point load index, water absorption, P-wave velocity, and density were considered as inputs. Using variance accounted for, mean absolute percentage error, root-mean-square-error, determination coefficient (R2), and performance index (PI), the efficiency of the methods was evaluated. Analysis of model criteria using multiple linear regression allowed for the development of a user-friendly equation, which proved to have adequate accuracy. All intelligent methods (with R2 > 90%) had excellent accuracy for estimating UCS. The percentage difference of the average of all six intelligent methods with the measured value was equal to +0.28%. By comparing the methods, the accuracy of the support vector machine with radial basis function in predicting UCS was (R2 = 0.99 and PI = 1.92) and outperformed all the other methods investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.